Jordan chains of elliptic partial differential operators and Dirichlet-to-Neumann maps

نویسندگان

چکیده

Let $\\Omega \\subset \\mathbb{R}^d$ be a bounded open set with Lipschitz boundary $\\Gamma$. It will shown that the Jordan chains of m-sectorial second-order elliptic partial differential operators measurable coefficients and (local or non-local) Robin conditions in $L_2(\\Omega)$ can characterized help Dirichlet-to-Neumann map operator from $H^{1/2}(\\Gamma)$ into $H^{-1/2}(\\Gamma)$. This result extends Birman–Schwinger principle framework for characterization eigenvalues, eigenfunctions geometric eigenspaces to complete all generalized algebraic eigenspaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Q-functions and Dirichlet-to-neumann Maps for Elliptic Differential Operators

The classical concept of Q-functions associated to symmetric and selfadjoint operators due to M.G. Krein and H. Langer is extended in such a way that the Dirichlet-to-Neumann map in the theory of elliptic differential equations can be interpreted as a generalized Q-function. For couplings of uniformly elliptic second order differential expression on bounded and unbounded domains explicit Krein ...

متن کامل

Dirichlet to Neumann Operator on Differential Forms

We define the Dirichlet to Neumann operator on exterior differential forms for a compact Riemannian manifold with boundary and prove that the real additive cohomology structure of the manifold is determined by the DN operator. In particular, an explicit formula is obtained which expresses Betti numbers of the manifold through the DN operator. We express also the Hilbert transform through the DN...

متن کامل

Analytic continuation of Dirichlet-Neumann operators

The analytic dependence of Dirichlet-Neumann operators (DNO) with respect to variations of their domain of definition has been successfully used to devise diverse computational strategies for their estimation. These strategies have historically proven very competitive when dealing with small deviations from exactly solvable geometries, as in this case the perturbation series of the DNO can be e...

متن کامل

A new approach to analyticity of Dirichlet-Neumann operators

This paper outlines the theoretical background of a new approach towards an accurate and well-conditioned perturbative calculation of Dirichlet{Neumann operators (DNOs) on domains that are perturbations of simple geometries. Previous work on the analyticity of DNOs has produced formulae that, as we have found, are very ill-conditioned. We show how a simple change of variables can lead to recurs...

متن کامل

Analyzing Photonic Crystal Waveguides by Dirichlet-to-Neumann Maps

An efficient numerical method is developed for modal analysis of twodimensional photonic crystal waveguides. Using the Dirichlet-to-Neumann (DtN) map of the supercell, the waveguide modes are solved from an eigenvalue problem formulated on two boundaries of the supercell, leading to significantly smaller matrices when it is discretized. The eigenvalue problem is linear even when the medium is d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of spectral theory

سال: 2021

ISSN: ['1664-039X', '1664-0403']

DOI: https://doi.org/10.4171/jst/366